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A master equation is derived microscopically to describe the fluctuating 
motion of the particle density in / ,  space. This equation accounts for the 
drift motion of particles and is valid for any inhomogeneous gas. The 
Boltzmann equation is obtained from the first moment of this equation by 
neglecting the second cumulant (the pair correlation function). The suc- 
cessive moments form coarse-grained BBGKY-like hierarchy equations, 
in which small spatial regions with r~j < the force range are smeared out. 
These hierarcfiy equations are convenient for investigating the nonequi- 
librium long-range pair correlation function, which arises mainly from 
sequences of isolated binary collisions and gives rise to the much-discussed 
long-time tail and the logarithmic term in the density expansion of trans- 
port coefficients. It is shown to have a spatial long tail, like the Coulombic 
potential, in a steady laminar flow. The stochastic nature of the nonlinear 
Boltzmann-Langevin equation is also investigated; the random source 
term is found to be expressed as a linear superposition of Poisson random 
variables and to become Gaussian in special cases. 

KEY WORDS: Master equation for /,-space fluctuations; Boltzmann- 
Langevin equation; molecular chaos; nonequilibrium long-range cor- 
relations. 

1. I N T R O D U C T I O N  

The system we consider  is a classical gas with shor t - ranged,  repulsive, and  
pai rwise  in teract ion.  When  the system is sufficiently dilute,  the Bol tzmann  
equa t ion  is known  to p rov ide  a g o o d  descr ip t ion  o f  the average mo t ion  of  
the  par t ic le  dens i ty  in the s ix-dimensional  (r, v) space (t~ space). This equat ion  
is d o s e d  in the one -body  d i s t r ibu t ion  f u n c t i o n f ( r ,  v, t),  which is the average 
quan t i t y  defined by  

f f ( r ,  v, t)  -- dx ~ o(x N) ~ 3(r - ri(t)) 3(v - v~(t)) (1) 
t= l  
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The vector (ri(t), vi(t)) represents the position and velocity of the ith par- 
ticle at time t, and p(x N) is an initially given phase-space distribution func- 
tion. The actual particle density in F space, on the other hand, exhibits 
fluctuations around the mean value f(r ,  v, t). To describe these phase-space 
fluctuations, some authors consider that the distribution of the particle 
numbers f (where /x space is divided into cells) obeys a master equation 
essentially equivalent to (1-5> 

- -  A,j(f~ + 1)(fj + o t p ( { f } , t )  = �89 ~ k~ 1) 
i ,J ,k, l  

x P(f~ + 1,fj + 1,fk - 1,fz - 1, {f'}, t) 

- �89 ~.. A~I f f jP({ f } ,  t) (2) 
i ,y,k,l  

Here, {f ' )  is the set of the particle numbers other than i, j, k, and t; P({f),  t) 
gives the probability of finding the particle numbers with values {f}; A~] is 
the transition probability for the binary collision with initial state (i, j )  and 
final state (k, l); and the factor 1/2 reflects the indistinguishability of identical 
particles. The particle numbers {f} follow the Markovian stochastic process 
determined by Eq. (2). The first moment of Eq. (2) is the equation for the 
one-body distribution function 

i , j , k , l  

where the bracket (.. .) represents the average over P({f}, t). If  we neglect 
the pair correlation function 

g,j = ( f~ f~ )  - ( f ) ( L )  (4) 

then Eq. (3) reduces to the Boltzmann equation for spatially homogeneous 
cases. The master equation (2) neglects completely the drift motion of particles, 
which causes spatial inhomogeneities of the system, so that it cannot be used 
to treat transport phenomena and spatial molecular correlations. In this 
paper we derive "microscopically" a master equation similar to Eq. (2) and 
applicable to any inhomogeneous case. 

Next we mention the treatment of phase-space fluctuations by the 
Boltzmann-Langevin equation, (5-13~ which is of the form 

f(r,  v, t) = r(r, v; F, F) + R(r, v, t) (5) N + v . ~  

where V is the collision term in the Boltzmann equation and R is the random 
source term. This form of the equation is suggested by the fact that the actual 
hydrodynamic variables obey hydrodynamic equations with random stress 
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and heat current that are Markovian and Gaussian stochastic processes. ~14) 
The fluctuating kinetic equation (5) should give a finer description than the 
fluctuating hydrodynamic equations, so that the latter must be derivable 
from the former. 

However, both the physical and mathematical meanings of Eq. (5) 
have been obscure; that is, the stochastic nature of the random source term 
has not been specified explicitly. Moreover, only the linearized version of 
Eq. (5) has been treated around the Maxwell distribution function fM(v) or 
the mean value f(r ,  v, t). It should be remarked that the stochastic nature 
of Eq. (5) can be examined only on the basis of microscopic arguments of 
the collision processes. This is done in this paper. Furthermore, we also 
reveal the role of the nonlinearity appearing in the collision term of Eq. (5), 
which in fact gives rise to long-range molecular correlations. Finally, we 
note the relation between the two approaches to the phase-space fluctuations, 
one through the master equation and the other through the Boltzmann- 
Langevin equation. They are shown to be equivalent to each other. 

2. B O L T Z M A N N - L A N G E V I N  E Q U A T I O N  

The Liouville operator of our system is written as 

N 
= + 0,j (6) 

~=1 i < j  

0,j = m E V(r,,). N, ~'vi (7) 

The pair potential V(r~j) will be assumed to be short-ranged and repulsive. 
The particle density in ~ space is usually defined by 

N 

N(r, v, t) = ~ 3(r - r,(t)) ~(v - v~(t)) (8) 

This quantity obeys the so-called Klimontovich equation 

+ vl" N(rl,  vl, t) 

= f dr2 dr2 012[N(rl, vl, t)N(r2, v2, t) 

- 3(rl - r2) 3(vl - v2)N(rl, vl, t)] (9) 

which is a closed equation for the particle density in ~ space, and determines 
completely the precise microscopic motion of the indistinguishable N-particle 
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system. What is the relation between this microscopic equation and the 
fluctuating kinetic equation (5), which is of course approximate? Mori 
answered that a stochastic kinetic equation like Eq. (5) describes the motion 
of the spatially coarse-grained particle density in tz space. (~3~ He performed 
the spatial coarse-graining by replacing the spatial 3 function in the definition 
of the fine-grained particle density (8) by the following function with a 
finite width of the peak: 

fq dq exp[ iq - ( r -  r,(t))] A(r -- r~(t)) = (2~r)3 
<A-I 

(10) 

where the cutoff length A satisfies 

a<< A<< I (11) 

a being the force range of the potential and l the mean free path. It is clear 
that the approximate equation (5) does not describe the short-wavelength 
part of the fine-grained particle density N(r, v, t). 

We denote the coarse-grained particle density by F(r, v, t): 

N 

F(r, v, t) = ~ A(r - r,(t)) 8(v - vi(t)) (12) 
i = 1  

The quantity F(r, v, t) is a dynamical variable dependent on the phase-space 
configuration of the N-particle system and obeys the equation 

+ vl. F(ra, vl, t) = S(1, t) (13) 

where 

S(1, t) = fdl' A(rl - r ( )  3(v~ - vl') 

x f d2' 01,z,[N(I', t)N(2', t) - 3(1' - 2')N(l ' ,  t)] (14) 

Here 1 = (r~, v~), 1' = (r(,  vx') .... represent points in tz space. This equation 
is not closed in F(r, v, t), so that we must relate the right-hand side of Eq. 
(13) to F(r, v, t) to construct a closed equation in F(r, v, t). This wilt be 
shown to be possible if the system is sufficiently dilute and the dominant 
interaction process is an isolated binary collision. It is convenient to integrate 
Eq. (13) over a small time interval to examine the collision term S(1, t): 

F(1, t + At) = F(rl + Atvl, vl, t) + &S(1, t) (15) 
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where 

fo ~ 
AS(I, t) = d~(exp[-(At  - T)vl.~/0r~]}S(1, t + 7) (16) 

The time difference At is chosen to satisfy 

tc << At << tmr (17) 

where tc ,,~ a/vth is the duration time of a binary collision and tmf ~ l/vth is 
the mean free time, with vt~ the thermal velocity. The nature of the collision 
increments AS(l,  t) can be examined by considering their moments 

( a S ( l ,  t))  

{AS(l,  t) AS(2, t)) 
(18) 

{AS(l,  t) AS(2, t) AS(3, t))  

where (.. .) represents an average over a nonequilibrium ensemble in general. 
These moments can be expanded in powers of At if the binary collision is 
assumed to take place instantaneously compared with At and the leading 
terms in At can be related to the average ( F F ) .  Kirkwood considered only 
the first moment and obtained an expression in which the two-body distribu- 
tion function at large spatial separation is involved. (15) By introducing the 
approximation 

g(1,2, t ) = f ( 1 , 2 ,  t ) - f ( 1 ,  t ) f (2 ,  t) = 0  for ] r l - r 2 l > > a  (19) 

the first moment becomes the Boltzmann collision term multiplied by At. 
This is the molecular chaos hypothesis and expresses no long-range pair 
correlation. In this paper, however, we consider the fluctuations of F(1, t) 
around f(1,  t) and therefore retain the long-range pair correlation. We 
readily notice that the long-range pair correlation function coincides with 
the second cumulant of F by its definition, that is, 

g(1, 2, t) = (F(1, t)F(2, t)) 

- (F(1, t ) ) (F(2,  t))  for jr1 - r21 >> a (20) 

All the moments in Eq. (18) must be calculated to relate AS(l,  t) to 
F(1, t) [Kirkwood related the average (AS(l ,  t))  to the average f(1,  t) 
using the molecular chaos hypothesis]. This program is much facilitated by 
introducing the characteristic functional of AS(l,  t) defined by 

C({a}) = {e ax) (21) 
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where 

f dl a(1) AS(l ,  t) AX 

ffl = d l  dr  a(rl + (At - r)vl, v)S(1, t + r) (22) 

Here, a(1) is an arbitrary function having only long-wavelength components 
(k < A -~) corresponding to the spatial coarse-graining. The increment AX 
is written in terms of the molecular positions and velocities as 

~o ~t A X  = - ~  d-r fl(i(t  + r ) , j ( t  + T)) (23) 

where 

/3(1, 2) = 012[~(rl + (At - ~-)vl, vl) + a(ra + (At - r)v2, v2)] (24) 

Thus, 

e ax = 1 + ~ tiT1.., dTr ~ .  "'" ~ fl(il(t + r l ) , j l ( t  + ~z)) 
r=l iz<]l ~r<]r 

�9 .. fl(iT(t + "r~),jT(t + %)) (25) 

In the above approximation the number of particles labeled (i~, A) ..... (iT, L) 
extends from at least two to at most 2r. The terms involving two particles 
are characterized by 

(i~, j , )  -- (/2, J2) . . . . .  (iT, Jr) (26) 

and represent one binary collision. These terms are proportional to At when 
averaged over a realistic nonequilibrium ensemble, because the collision is 
assumed to take place almost instantaneously. The averages of the other 
terms involving more than three particles are higher in At or in the density 
for the system concerned, so that these terms can be neglected. Picking up 
the terms representing one binary collision, the characteristic functional C 
can be written as 

C({a}) = 1 + . = r. Jo d~'r 

• <fi(i(t + - q ) , j ( t  + -r~))...fl(i(t + "rr),j(t + TO)> 

<If: 1 )  = 1 + ~. exp - d r f i ( i ( t +  ~ ) , j ( t  + ~-)) - 1 (27) 
t< . /  

The colliding pair can be assumed to suffer no interactior~ from the other 
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N - 2 particles in the small time interval t ,-~ t + At. Then, the problem is 
reduced to two-body dynamics. We find the relation 

f3(i(t + r ) , j ( t  + -r)) = f d2 3(1 - i(t))  8(2 j ( t ) )  

x [ e x p ( -  i~2r)]O~z{exp[-  i~~  - r)]} 

• [~(1) + o~(2)1 

- ~ d l  d2 8(1 - i( t))  8(2 - j ( t ) ) [ e x p ( -  i~12r)] 

x { e x p [ - i ~ ~  - r)]}[~(1) + c~(2)] (28) 

where 

is = ioW~ + 012 

i~~ = - -  v l ' ~ / ~ r l  - v2.~/~r2 

Therefore ,  the integration with respect t o .  can be performed to give 

C({c~}) = 1 +fdlfd2(e*~l.2'-l)(~j3(1-x,(t)8(2-xj(t))) 

y(1, 2) = [exp(-iL~~ - exp(-i~-q~~ + c~(2)1 

= cr vl(At)) + cr v2(At)) 

- ~(rl + Atvl,  vl) - ~(r2 + Atv2, v2) 

where 

(29) 

(30) 

(31) 

(32) 

The quant i ty  7(1, 2) is not  zero only when the collision takes place in the 
t ime interval t ~ t + At, so that  the small spatial region r12 ~< v12 At 
contr ibutes in the spatial integration in Eq. (31). Taking for the r2 integra- 
t ion cylindrical coordinates with the axis in the direction of  the relative 
velocity v2 - vl and denoting the coordinate  along the axis by ~: and the 
polar  coordinates by b and ~b, we integrate over r2 to obtain approximately  

f f f  ff C({c~})= 1 + � 8 9  41 dr2 d b b d r  dr  m ' z ~ -  1) f (1 ,2 ,  t) 
r  

(33) 
d 3 J 

where 

7"(1,  2)  = c~(h, vz')  + - ( r l ,  v2') - ~ (r l ,  v l )  - c~(rl, vz) (34)  
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with vl' and v2' the velocities after the collision characterized by the impact 
parameter b and the azimuthal angle ~b. 

Use has been made of the fact that the function a(1) varies slowly in 
space, and the positions rl(At), r2(At), r~ + At v~, and r2 + At v2 in 7(1, 2), 
Eq. (32), are set equal to rl in Eq. (33). We note that the spatial region 
a << J r 1 -  r21 << l gives the main contribution in Eq. (33), so that the 
two-body distribution function can be replaced by the second moment of 
F(t) :  

f(1,  2, t) = (F(r l ,  vl, t )F(rl ,  v2, t)) for a << Jr1 - r2[ << l (35) 

Equation (33) can be rewritten in a more symmetric form by introducing the 
transition probability defined by 

A l ' 2 "  = 12 a(v19., X) 3(h r2) 3(rl - h ' )  3(r2 - r2') 

• $(�89 + v 2 ) - � 8 9  +v2'))3(v~ 2 + v 2 2 - v ~  2 - v ~  2) (36) 

where a(v~2, X) is the differential cross section and X the deflection angle. 
The two $ functions in the velocity subspace represent the conservation of 
energy and momentum. The inverse collision process has the same transition 
probability, i.e., 

A v2"=12 A,~22 , (37) 

Then, Eq. (33) becomes 

C({,~}) = (exp[ f dl ,~(1) AS(1, t )])  

= 1 + �89 fal l  d2 all' d2' A,~'{exp[a(1 ') + a ( 2 ' ) -  a(1) - - 1} 

• ( r ( l ,  t)F(2, t)) + ... (38) 

Functional differentiation of the above equation with respect to a(1) yields 

(AS(l ,  t)--. AS(r, t)) 

f d i  d2 d i '  - '  ~'~' = �89 d2 Ai~ 

x I - I  [3(i - i ' )  + 3(i - 2') - 3(i - i) - 3(i - 2)] 
i = l  

x (F( i ,  t)F(~2, t ) )  + ... (39) 

The first term (r = 1) is nothing but the Boltzmann collision term multiplied 
by At. Equation (38) relates the collision increment AS(I, t) statistically 
to the product F(1, t)F(2, t). 
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We will adopt the assumption that &S(1, t) is a random variable whose 
distribution is dependent on the product F(1, t)F(2, t) via Eq. (38); then, 
the starting equation (15) becomes closed in " the  random variable F." 
For small &t, Eq. (15) can be written as the following stochastic differential 
equation: 

AF(1, t) + At vl.(~/Orl)F(1, t) = AS(I, t) (40) 

The incremental change of F(1, t) arises from the drift motion and the 
binary collision separately. The random force may be defined by 

AR(1, t) = dr R(I, t + T) = AS(I, t) - At r(1; F(t), F(t)) (41) 

where F is the Boltzmann collision term, quadratic in F(t). The characteristic 
functional of the random increment AR(1, t) is written as 

 explfdl 41)AR(1, t )])  

= 1 + 1AtfUl d2dl' d2' AI'22" 

x {exp[~(l') + ~(2') - c,(1) - eft2)] - ~(1') - ~(2') + ~(1) + ~(2) - 1} 

x (F(1, t)F(2, t)) +-. .  (42) 

The average of the random source term vanishes by its definition in any 
nonequilibrium situation; in general, the random source term is statistically 
independent of the past values of F, i.e., 

(R(1, t)*({F(s)}; s < t)) = 0 (43) 

where qS({F(s)}; s < t) represents an arbitrary functional of the past values 
of F. Clearly, the random force conserves the number, momentum, and 
energy, i.e., 

t'l f dv v R(r,v, t) = (44) 0 
Lv23 

which is easily seen from the definition of the transition probability, Eq. (36). 
The second moment of R(1, t) may be defined by 

(R(1, h)R(2, t2)) = (1/&h At2)(A~R(1, h) A2R(2, t2)) (45) 

where A~R(1, tl) is the random increment in the time interval h '~ tl + At~ 
and A2R(2, tz) is that in the time interval t2 ,,~ t2 + At2. The right-hand 
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side of Eq. (45) does not vanish only when the two time intervals overlap. 
Let At be the overlapping time; then, Eq. (45) is written as 

At 1 (AR(1, tl) AR(2, tl)) (46) (R(1, q)R(2, t2) ) = Aq At2 At 

where AR(1, tl) and AR(2, t2) are the random increments in the same time 
interval of width At. In the limit of small time intervals we can prove the 
mathematical relation 

At/(Aq At2) = 3(tl - t2) (47) 

Therefore, using Eq. (42) we obtain the second moment in the form 

(R(1, q)R(2, t2)) 

�89 - t2) f di d2 di'  d2' A ~  ~' 

2 

• N [3(i - i ' )  + 3(i - 2') -- 3(i - i) - 8(i -- 2)](F(i, q)F(2, t2)) 
i = l  

(48) 

In equilibrium this expression is written in the form 

(R(1, q)R(2, t2))eq = 23(q - t2) 3(r~ - r2)(v~lJ01v2) (49) 

where (v~] Jo Iv2) is the integral kernel of the linearized Boltzmann collision 
operator around the Maxwell distribution function fM(v). Use has been 
made of the relation 

(F(I ,  t)F(2, t))eq = f~(vl)f~(vu) for jr1 - rzl >> a (50) 

The higher moments may be defined by 

(R(1, q) ... R(r, tT)) = (1/Ad ... A2t)(A~R(1, q) ... ATR(r, tT)) (51) 

which do not take simple forms. This is because the higher moments (r t> 3) 
involve up to r - 1 collisional events which have correlations among one 
another. 

3. M A S T E R  EQUATION A N D  C O A R S E - G R A I N E D  
H I E R A R C H Y  EQUATION 

We can consider the distribution functional of the coarse-grained 
particle density F(1, t) because it evolves obeying Eq. (40). It is convenient 
to introduce here the characteristic functional of F(1, t) by 

Q((~), t) = ( e x p [ f  dl ~(1)F(1, t ) ] )  (52) 
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where (.-.) represents a nonequilibrium average in general. The distribution 
functional of the random variable F(t,  t) will be denoted by P({f}, t), 
which gives the probability for F(I, t) to take the value f(1 - t). The time 
evolution of Q({~}, t) can be written from Eq. (40) as 

8-~ Q({,7}, t) 

I 
= 1}m ~ ~-~ ( { e x p l f  dl ,7(1)AF(1, t ) ] - 1 ) e x p [ f  dl ,7(1)F(1, t ) ] )  

= - ~  fdl ,7(l)vl.~r 1 F(1, t ) e x p [ f  al ,7(1)F(l, t ) ] )  

1 
+ allm ~-~ ~ @ x p [ f  dl ,7(1)AS(l, t ) ] - 1 }  e x p [ f  dl ,7(1)F(1, t ) ] )  

(53) 

Equation (38) says that the distribution of the collisional increment AS(l, t) 
is determined completely by the instantaneous value of F(1, t), so that the 
second term on the right-hand side of Eq. (53) is written as 

 fal d2 dl' d2' Al•'{exp[?/(l') + ,7(2') - ,7(1) - ,7(2)] - 1} 

x (F(1, t)F(2, t)explfdl,7(1)F(1, t)] ) (54) 

Thus, Eq. (53) can be expressed in the form 

(8/Ot)Q({,7}, t) = .~(,7, 3/3,7)Q({v}, t) (55) 

with 

= - dl ,7(1)vl. 0rl 8r/(1) 

�89 d2 dl" d2' Al;~'{exp[,7(1 ') + ,7(2') - ,7(1) - ,7(2)] - 1} + 

82 
M 

8,70) 8,7(2) 

On the other hand, the distribution functional P({f}, t) is governed by 

(O/Ot)P({f}, t) = .@(-~/~f,f)e({f}, t) 

(56) 

(57) 
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with 

vl "~-~1 f(1) 

+ � 8 9  d2dl'd2'Af22" 

x exp 8f(l ') 8f(2') 

Akira Onuki 

- -  + 3 - ~  + ~  - 1 f (1)f (2)  

(58) 

The operator exp[8/Sf(1)] has the meaning 

{exp[8/Sf(1)]}P({f(l')}) = P({f( l ' )  + 8(1 - 1')}) (59) 

The operator -~( -  3/Sf, f ) ,  Eq. (58), is obtained by the following replacement 
in the expression of N(7, 8/87): 

7(1) --+ - 3/8f(1) and 8/87(1 ) -->f(1) (60) 

The first term of Eq. (58) represents the drift motion; the second term repre- 
sents the binary collision, which is capable of an intuitive explanation by 
dividing/z space into cells. The second term reads 

�89 ~, A~](f + 1)(fj + 1)P(f~ + 1,fj + 1,fk - 1,f~ - 1, {f'}, t) 
J,t ,k, , l  

- �89 ~. A~]ff~P({f}, t) 
t,j,lr.,l 

(61) 

This term is explained in Section 1. We note that the distribution functional 
P({f),  t) has no definite limit as a functional o f f ( l )  in the limit of small 
cell division. However, the master equation (57) shows that the average of 
any functional of F(1, t), say A({F(t)}), obeys the equation 

e5 <A({f(t)})) = .~ , f ( t )  A({F(t)}) (62) 

This quantity may well be expected to be well-defined even when the 
continuous limit of cell division is taken. 

Next, we introduce the r-body distribution functional by a6> 

Q = 1 + ~. dl ... dr ~(1) ... ~(r)f(1 ..... r, t) (63) 
,--'71 



On Fluctuations in I~ Space 487 

where 

~(1) = e nCl~ - 1 (64) 

The characteristic functional Q can be regarded as the generating functional 
of the r-body distribution functions; {2, as a functional of ~(1), obeys the 
equation 

f ';1 + dl ~(1)vl arl 8 ) Q({{}, t) 

1 f dl d2 dl '  d2' Al"2"sr~'tl '' = ~  12tt~v j + 1][~(2') + 1] 

- [~(1) + 1][~(2)  + I]} 
8 2 

8~(1) 3.~(2) Q({~}' t) (65) 

following 

=2f+ 
i = 1  

+ 1)T}g~+lf(l,...,r + 1, t) 

where T{ ~ is the operator on i and j defined by 

T~~ f di' dj' ~'j . . . . .  = A,j [ ~ ( l ,  j ) - ~(i, j ) ]  

r,) f df~ v,F(v,,, x)[a(i ' , j ' )  - c~(i,j)] (67) 8(r, 

where a(i,j) is an arbitrary function of i and j. The r-body distribution 
functions are defined in the usual way by 

f(1 .... ,r, t) = ~. (8(1 - il(t)).. .  8(r - i,(t))) (68) 
UZ,.-.,~r) 

The above functions change rapidly in space and time in a complicated way 
in the small region r~j ~< a because of short-range correlations and slowly 
in the remaining region. On the other hand, the r-body distribution functions 
defined by Eq. (63) change slowly in space in the whole spatial region. That 
is, the small spatial region r~ s <<. a is smeared out in the new distribution 

Functional differentiation with respect to ~(1) yields the 
BBGKY-like hierarchy equations: 

+ vl" f ( l ,  t) = d2 T~g~f(1, 2, t) 

~ ] (66) - -  - T{ ~ f ( 1 ,  ,r, t)  + v~. c~r~ ~ "'" 
i= 1 l <~<<.]<~r 
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functions; therefore, we may call them the coarse-grained distribution 
functions. The hierarchy equations for the cumulant correlation functions 
are also obtained by setting 

Q({~}, t) = exp dl ~(1)f(1, t) + �89 ~(1)~(2)g(1, 2, 

+ (1/3 l) j" dl d2 d3"~(1)~(2)~(3)h(1, 2, 3, t) + ""t (69) 

where g(1, 2, t) is the pair correlation function, h(1, 2, 3, t) is the three-body 
cumulant correlation function, etc. The equilibrium solution is given by 

Qea({~}) = exp[j'dl ~(1)fM(v~)] (70) 

fM(v) being the Maxwell distribution function. The Boltzmann equation is 
obtained if we neglect cumulant correlation functions higher than the 
second (no long-range correlation); in this case, the distribution of the 
particle number in a cell of tz space is Poissonian, independent of one 
another. The cumulant correlation function does not vanish in general in 
nonequilibrium. The long-range pair correlation function is investigated 
in Section 5. 

4. S T O C H A S T I C  N A T U R E  OF THE R A N D O M  FORCE 

We show that the collision increment AS(l, t) determined by Eq. (38) 
can be expressed as a linear superposition of random variables obeying a 
Poisson distribution independent of one another (multi-Poissonian). This 
fact was already argued by Kogan and Shul'man intuitively on the analogy 
of shot noise, m) Let us consider the number of binary collisions occurring 
in the small time interval t ~ t + At such that the two colliding particles 
are located initially in cells A1 and A2 and transferred finally to cells AI' 
and A2'. This number will be denoted by AJ~'z2"(t). The increments AS(l, t) 
and AX are expressed as 

f di AS(i, t) = ~ ~ ~. [-AJ~'22"(t) + AJ~,~,(t)] 
1 A 2 Aft &2' 

(71) 

AX(t) = �89 ~ ~ ~ ~ [a(l') + c~(2') -- c,(1) -- a(2)] AJ~'22"(t) 
A1 A2 &l" ~2' 

(72) 

where the integration with respect to i is limited to within A~ and the func- 
tion c~(1) is assumed not to vary appreciably in one cell. It is natural to 
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expect that the collision numbers AJ~,'22'(t) obey a Poisson distribution with 
mean value 

This is equivalent to the assumption that the binary collisions in the time 
interval t ~ t + At take place randomly and independent of one another. 
We note that the characteristic functional of a Poissonian random variable, 
say x, is 

(e ~x) = e (e"-1)(x) (74) 

and that the collision numbers AJ~2"(t) are doubly counted in Eq. (72) 
because of the relation 

AJ~1"22'(t) = AJ~,i,(t) (75) 

Now, we can write down the characteristic functional of AS(l, t) in the same 
form as Eq. (38) 

(exp(AX)) 

-- exp(�89 ~ ~ ~ ~ {exp[~(l') + ~(2') -- ~(1) -- ~(2)] -- 1} 
\ &l &2 &1" &2' 

• 

= 1 + �89 ~ ~ ~ ~ {exp[~(l') + ~(2') - a(1) - ~(2)] - 1} 
AI &2 AI' A2" 

• (AJ~'22"(t)) + ... (76) 

where (AJ~'2z'(t)) is considered as infinitesimal. 
We recall here that the theory of generalized Brownian motion has 

usually assumed the Gaussian nature of the random force. (17,1~) However, 
our expressions (38) and (42) contain a(1) in an exponential manner, showing 
that AS(l, t) is multi-Poissonian. The phase-space random increment 
AR(1, t) can be approximated as Gaussian in two special cases. One is the 
case in which all of the particle numbers in one cell are much larger than 
unity. (a'4'19,2~ If  this holds, the distribution P({f}, t) suffers only a small 
change from a single binary collision. The collisional change of P({f}, t) 
Eq. (61), can be expanded as 

+ 2 ~ + ~fj Of~ ~ ff, .P({f}, t) (77) 
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Therefore, the master equation for P({f}, t) reduces to a Fokker-Planck 
equation which contains the derivatives 3 /~ f  up to the second power. It is 
well known that gross variables with a Gaussian random source are governed 
by a Fokker-Planck equation. The cond i t ionf  >> 1 is interpreted as 

A N  = nAa(Av/vth) a >> 1 (78) 

where A is the linear spatial size satisfying Eq. (11), Av is the linear size in 
the velocity subspace, n is the average number density, and vth is the thermal 
velocity. We note, however, that the number AN may be either greater or 
smaller than unity. The sole condition on A, Eq. (11), does not determine 
the magnitude of AN. Furthermore, the linear size in the velocity subspace 
Av can be chosen arbitrarily. Our results so far obtained do not depend on 
the magnitude of Av. 

The second special case is the weak coupling case, in which small-angle 
collisions are dominant. The quantity c~(l') + c~(2') - ~(1) - c~(2) in Eq. (42) 
can be considered to be small when the cross section is large for small 
deflection angle (an example is given by the Coulombic interaction). In this 
case Eq. (42) can be expanded as 

~ e x p [ f  dl a(1)AR(1, t ) ] )  

= 1 + �88 d 2 d l '  d2'  AI;2'[~(1 ') + c,(2') - c~(1) - ,~(2)12 

x (F(I ,  t)F(2, t)) + ... 

u ,  v ~t)  2zt 

[ 0 c~(1)- 0 c~(2)](F(1, t)F(2, t ) ) + - . .  
J 

(79) 

where 

,x = 2 ( v 1 '  - V l )  = 2 ( v 2  - v ~ ' )  ( 8 0 )  

is the collisional change in the relative velocity, and use has been made of 
the expansions 

~ ( r l ,  vz' )  = ~ ( r l ,  v l )  + 1 A ' ( 0 / ~ v z ) ~ ( r l ,  v l )  + "-- 

~ (r2 ,  v2') = ~(r2,  v2) - � 8 9  v2) + ... 
(81) 
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The second moment of the random force is given by 

(R(I, tl)R(2, t2)) 

= 3(tl - t2) ~ 0vl. 0v2v 8(1 - 2) dl  B.v(1, i ) (F(I ,  t)F(i,  t))  

- Bu~(1 , 2)(F(1, t)F(2, t ) )]  (82) 

where the tensor B.~(1, 2) is defined by 

B.~(1,  2) = 18(r~ - r 2 ) v l ~ ( v ~  8.~ - v~.v~2~) 

x 2,~ dx ( s in  X)~(v~, X)(1 - c o s  X) (83)  

In general, the random force is Gaussian when the potential is much smaller 
than the kinetic energy of one particle, because the random increment itself 
can be expanded in the potential. Examples are an assembly of colloidal 
particles suspended in fluids, electrons coupled with acoustic phonons, and 
plasmas with sufficiently small plasma parameter. 

5. L O N G - R A N G E  C O R R E L A T I O N  IN N O N E Q U I L I B R I U M  

The coarse-grained hierarchy equations (66), which are related to the 
characteristic functional of F(1, t) by Eqs. (63) and (64), can describe long- 
range molecular correlations extending much farther than the force range, 
if we are not interested in short-range correlations. They exist generally in 
nonequilibrium and give rise to the deviation of molecular chaos. In what 
follows we examine the long-range pair correlation function g(1, 2, t) by 
neglecting the third cumulant correlation function h(l, 2, 3, t). This is the 
simplest approximation. The cumulant correlation functions are defined by 

f(1,  2, t) = f(1,  t )f(2,  t) + g(1, 2, t) (84) 

f(1,  2, 3, t) = f ( l ,  t ) f(2,  t )f(3,  t) + f(1,  t)g(2, 3, t) 

+ f(2,  t)g(3, 1, t) + f(3,  t)g(1, 2, t) + h(1, 2, 3, t) (85) 

It is plausible, except for a turbulent state, to assume that higher order 
cumulant correlation functions are smaller than the products of those of 
lower order. Of course, this assumption is invalid in small spatial regions 
Jr1 - rj[ ~< a. However, these regions are smeared out and do not appear in 
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Eqs. (66); this allows the truncation of Eqs. (66). Then, we obtain coupled 
equations for f(1,  t) and g(1, 2, t): 

+ vl. f (1 ,  t) = dx~ T ~ [ f ( 1 ,  t ) f (2 ,  t) + g(l ,  2, t)] (86) 

+ vl'~-~r~ + v2"~-~r2 + J(1, t) + J(2, t) - Ti~ g(1, 2, t) 

= T~mf(1, t ) f(2,  t) (87) 

where J(1, t) is the linearized collision operator around f(1,  t) and is written 
a s  

J(.1, t)a(1) = - f  dxz T]~[a(1)f(2, t) + a(2)f(1, t)] (88) 

where a(1, t) is an arbitrary function. Integration of Eq. (87) is performed to 
give 

g(1, 2, t) = U(I, 2, t, t0)g(1, 2, to) 

+ dr U(1, 2, t, r~T(~ cq  j 12~,, , r )f(2,  r) (89) 
0 

where the propagation operator U(1, 2, t, r) is defined as the solution of 
the operator equation 

g(1,  2, t, ~-) = - v1.?-/7~ 
at 

u(1, 2, r, r) = 1 

a T <~ Uq  r) + J ( 1 ,  t) + v2.~r  2 + J ( 2 ,  t ) -  12] t ,2, t, 

(90) 

The first term on the right-hand side of Eq. (89) represents the propagation 
of the initial pair correlation and decays after a sufficiently long time; the 
second represents the creation of long-range pair correlations, which is 
effective only when the one-body distribution function deviates from 
Maxwellian. It is easily verified from the definition of T~ ,  Eq. (67), that the 
right-hand side of Eq. (87) vanishes when f(1,  t) is Maxwellian. However, 
f(1,  t) deviates from Maxwellian in nonequilibrium and the right-hand side 
of Eq. (87) does not vanish. As the second term of Eq. (89) indicates, cor- 
relation between two particles is created when they encounter, and then 
propagates in space and time. The operator v.~/ar + J expressed damped 
propagation of a single particle suffering isolated binary collisions with 
other particles. Equation (86) differs from the ordinary Boltzmann equation 
by the presence of the pair correlation function in the collision integral. The 
collision term involving g(1, 2, t) accounts for sequences of correlated 
binary collisions taking place over a large spatial region and for a long 
time compared with the force range and the collision duration time, 
respectively. We consider the following two special cases briefly. 
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5.1. Small Deviations f rom Equil ibrium 

We can derive the so-called ring operator first introduced by Kawasaki 
and Oppenheim <21~ by tinearizing Eqs. (86) and (89) around equilibrium. 
The small deviation 3f(1, t) = f ( l ,  t) - f • (1 )  obeys the linear equation 

+ vl.~r-~ + J0(1) 3f(1, t) 

+ dr dx2 M(1, 2, t - r) 3f(2, ~-) = ~(1, t) (91) 
"J tO " J  

where Jo(1) is the linearized Boltzmann collision operator and the term 
-@(1, t) expresses the effect of the initial[ pair correlation coming from the 
first term of Eq. (89) and vanishes after a long time. The memory function 
M(1, 2, t) is nothing but the ring operator and its Laplace transformation is 
written as 

j " M(1, 2, ~)c~(2) dx2 

jo j = dt e - a  dx2 M(1, 2, t)~(2) 

= f dx2T?~[~ 1 
+ vz.O/~rz + ,Jo(1) + v2.0/~r2 + J0(2) -- ~12T(~ 

_ 1 ] T~[a(1)f~2~(2) + a(2)fM(1)] (92) 
+ v1"~/~rl + v2"~/c~r2 

where, using the relation 

1 T(O) T] ~ = 0 (93) 
1 2  + v1.~/c~r I + v2.~/~r2 

we have subtracted the second term in the bracket of Eq. (92). This relation 
comes from the fact that a recollision of two particles occurs only when they 
are scattered by other particles and assures that the operator M(1, E), whose 
integral kernel is M(I ,  2, ~), is of higher order than J0(1) in the density. The 
ring operator gives rise to the long tail in various flux time correlation 
functions~22~ and the logarithmic term in the density expansion of transport 
coefficients.(2~, 2s~ 

5.2. Steady States 

We now examine the pair correlation function in a steady laminar flow. 
Equations (86) and (87) have various solutions corresponding to various 
macroscopic boundary conditions on the system. It is always assumed in 
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deriving the hydrodynamic equations from the Boltzmann equation that the 
one-body distribution function is given by the local equilibrium Maxwell 
distribution function in the limit of small velocity and temperature gradients. 
Then, the creation rate of the pair correlation, the right-hand side of Eq. 
(87), vanishes in the zeroth order of the inhomogeneities of the system and 
starts from the first order. In particular, there is no creation rate at equi- 
librium, and there is a constant source in a steady flow in which steady 
velocity and temperature gradients are set up. We assume that the number 
density n(r), the velocity field u(r), and the temperature T(r) vary slowly 
in space compared with the mean free path and there is no enhanced hydro- 
dynamic fluctuation due to instabilities. Then, the steady one-body distribu- 
tion function fs(1) is given in the zeroth order of the inhomogeneities of the 
system by the local equilibrium Maxwellian 

f(1) = n(rl) 2T(r~) Iv - u(rz)l 2 (94) 

The steady pair correlation function is given, from Eq. (87), by 

g~(1, 2) = v~.~-~r~ + J~(1) + v2"~-~2 + J~(2) T]~[f~(1)f~(2) + gs(1, 2)1 

(95) 

Exact treatment of the above equation is difficult, so we consider &(1, 2) 
for l < q2 < L. Here, l is the mean free path and L the characteristic length 
over which the hydrodynamic variables change appreciably. In this region 
the pair correlations arise from hydrodynamic origin, as will be shown in 
what follows. We first note that the operator v~.a/c~r, + J~(1) takes small 
values when it operates on functions of the form 

I l l  v~ f~(r~, v,)5(r~) (96) 

L 12J 

where /3(r,) is a slowly varying function in space. Therefore, Eq. (95) may 
be approximated as 

[ ~ ~ 1 -~ 
g (1, 2) = + JXl) + + J (2) 

x ~ ~(1)c9(2)_~1 ~(1 ~ 2 ~.q.j.<a+~ n(1) f ) n(2) f*( ) 

x ~ dv~ dr2 a,(1)%(2)T~[f~(l)f~(2) + g~(1, 2)] (97) 
a 
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where the cq(1) are linear combinations of 1, vl, and v~ 2 satisfying the 
normalization condition 

f dv~ ~,(1)~j(1)A(1) = 8,, 

Using the relation 

f dvl dr2 [a,(1) 

and Eq. (86) we obtain 

+ cq(2)][%(1) + %(2)]T~[.-.1 = 0 

(98) 

(99) 

e~ = vl - n(rl) (102) 

is the relative velocity with respect to the flow. Equation (100) can be ob- 
tained from the hydrodynamic equations without dissipative fluxes. Therefore, 
gs(1, 2) is written as 

g,(1, 2) = vl.~-~ + Js(1) + v2.~-~2 + Js(2) 8(rl - r2)f(1)f(2) 

m m 2 - d )  . B ( r @  x @~e2:A(rl) + [ (T--~) c22 - d)cx + (T(rl) C~ c2] 

(103) 

where the tensor A and the vector B are defined by 

A~B(r) = m [~_~xx uB(r)+ ~ 2 ~r.U(r)] (104) n(r)T(r) ~ u~(r) - ~ 8~B 

dt 2 1 
B.(r) - 2d n(r)T(r) ~x~ T(r) (105) 

where 

f dv~ dv2 a~(1)aj(2)T]~[f~(1)f~(2) + g~(1, 2)] 

= -8 ( r l  - r2 ) f  dr1 a~(1)%(1)v~.~f,(1) (100) 

To first order in the inhomogeneities we can set 

v l "~ r  f~(1)~ v l "~ r  f(1) 

cl 2 cl T(rl) ~rl T(rl) 

m ( 1 i )  D ] + ~ clel - -dCl 2 :~-~1 u(rl) f~(1) (101) 
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If  the spatial separation r12 does not exceed the distance L over which the 
hydrodynamic variables change appreciably, the system can be considered 
homogeneous in the first approximation. The static pair correlation function 
gs(1, 2) is thus Fourier-transformed in relative spatial coordinates as 

f d(r2 - rl) {exp[ik.(r2 - rl)]}g~(1, 2) gsk 

[ik'(cl -- c2) + J~(1) + Ji(2)]-lf(1)f(2) 

} 
Here, gs(1, 2) is considered as a function of r~ - rl ,  �89 + r2), c~, and c2, 
and J~ is replaced by J~, which is the linearized Boitzmann operator around 
fz. The operator ik.v + Jz has five (four) discrete eigenfunctions with small 
eigenvalues given by + ick + �89 2, vk 2, and Ak 2 up to the second power 
of k in three (two) dimensions. (~'~) Therefore, gsk is proportional to k-2 for 
L -~ < k < 1-1 and g~(1, 2) behaves for l < r12 < L like the Coulombic 
potential, 

g~(1, 2) ___ - J -  -~log(1/r~2) for d = 2 (107) 
t.1/r12 for d = 3 

The inhomogeneities are not neglected for r~2 > L. 
After detailed calculation we obtain 

1 1 (log 1 ) f ( 1 ) f ( 2 ) ( ( ! +  ~)clc2:A g~(1, 2) = 

1 4)  c ~ - 

m } 
+ 2 ~ ( c ~  e2 + c22e0"B (108) 

f o r d = 2 ; a n d  

g~(1, 2) = - -  - -  32~ r12 f (1 )Z(2)  (cl § clll)(c2 + c2 ll) § ~ c11c2 • 

1 3 -- 5)(c2 + cJ)  
+ 40--; 

(109) 
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for d = 3, where 

c l  II = ( r 1 2 / r ~ 2 ) ( r 1 2 - e l ) ,  c l  • = e l  - e l  tl 
(110) 

e2  II = (r12/r~2)(r12.c2), e2 • = e2 - e 2  II 

and v is the kinetic viscosity, A = •/pcp is the thermal diffusivity, and P is 
the sound attenuation constant. 

This result shows that the pair correlation extends much farther than 
the mean free path at nonequilibrium, although the behavior for r~2 > L 
is not considered. 

We can readily note from Eq. (93) that the long-range pair correlation 
function is given approximately by its projection on the hydrodynamic 
variables, that is, 

g~(1, 2) _ ~ ,~,(1)~j(2)f(1)f~(2)(&(rl, t)Aj(r2, t ) )  (111) 

where the ~ are linear combinations of 1, v, and v 2 chosen to satisfy Eq. (98), 
and the A~ are the hydrodynamic variables defined by 

t) = f dv ~(v)F(r, v, t) (112) A~(r, 

where F(r, v, t) is the coarse-grained density in/~ space, Eq. (12). The non- 
equilibrium averages (&(1)Aj(2)) can be calculated from Eq. (103) by 
considering its first (d + 2) • (d + 2) moments. We note that the same 
result can be obtained from the nonlinear fluctuating hydrodynamic equa- 
tions by linearizing them around mean values, and the long-range behavior 
of g~(1, 2) for r12 > L may be calculated from them. The above arguments 
clearly indicate that long-range molecular correlations such as Eqs. (108) 
and (109) exist generally in nonequilibrium fluids irrespective of density, 
although our discussion is limited to dilute gases. 

6. R E M A R K S  

We must treat the collision in a probabilistic way in order to be able 
to write down intuitively the collision term of the Boltzmann equation; the 
following assumptions are involved: 

(i) In each binary collision only the initial and final states of two par- 
ticles are considered and the intermediate details are not followed. The 
impact parameter b and the azimuthal angle ~b are assumed to take various 
values with equal probabilities. 

(ii) The collision rate is assumed to be proportional to the product 
f ( r ,  vl, t ) f ( r ,  v2, t), where vl and v2 are the initial velocities of the two 
particles. This is the molecular chaos hypothesis. 
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The first assumption can be justified if we assume that the multibody 
distribution functions change slowly in space and time compared with the 
force range a and the collision duration time, respectively; this procedure 
is called the coarse-graining of the BBGKY hierarchy equations in Section 3. 
The molecular chaos hypothesis, on the other hand, has not been used in 
this paper. The resultant equations are the coarse-grained hierarchy equations 
(66), which take into account sequences of correlated binary collisions and 
neglect genuine multiple collisions. Genuine multiple collisions, in which 
more than three particles interact simultaneously, can be neglected as long 
as the system is sufficiently dilute and give contributions to transport coeffi- 
cients analytic in the density. Moreover, the Enskog equation accounts for 
a large part of the genuine multiple collisions, ~25~ and long-range correlations 
arise mainly from sequences of correlated binary collisions. 
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